S&C FY02 ANNUAL REVIEW MEETING

In-Situ Real Time Measurements of Melt Constituents

Robert De Saro

Arel Weisberg, Joseph Craparo, Arthur Poulos

Energy Research Company

www.er-co.com

S&C FY02

DOE's Office of Industrial Technologies

Sensors and Controls

SENSORS & CONTROLS

Inventions and Innovations

Aluminum

Glass

Glass Industry of the Future

New York State Support

Industrial Participants

- Commonwealth Aluminum
- Century Aluminum
- Arco Aluminum
- Crucible Specialty Metals (steel)
- PPG Industries (fiberglass)
- Fenton Art Glass (specialty glass)
- Hugo Neu (metal recycler)
- Crestwood Metals (metal recycler)
- Stein Atkinson Stordy (overseas marketing)

Companies Expressing Interest

- Alcoa
- Hydro Aluminum
- Tennessee Aluminum Processors

Program Accomplishments

- LIBS Probe developed for in-situ analyses of molten aluminum and other materials
- Melt composition can be measured at any point below or on top of the melt surface
- Laboratory and pilot scale probes built
- First LIBS data ever recorded from within molten aluminum
- Demonstrated laboratory scale LIBS Probe at Alcoa plant during DOE Showcase, August 2001
- Will Demonstrate LIBS Probe at Commonwealth Aluminum during upcoming DOE Showcase

Program Accomplishments

- For Aluminum, Commercialization Plan Completed
- MOU for Licensing Agreement Signed for Overseas and US Market
- Patent Application Filed

Program Accomplishments

Other Opportunities

- Glass Batch, Cullet DOE Funding
- Molten Steel NYSERDA Funding
- Alloy Identification NY DED Funding

Recent Accomplishments

Equipment upgrades

- Industrial grade fiber optic coupled laser
- Upgraded Spectrometer System
- Upgraded Cooling System

Novel optical layout

- Increased accessible wavelength range
- Increased laser throughput
- Optical upgrades boost signal 5-10x

- Develop an in-situ and real time sensor for measuring the elemental constituents of metal and glass melts
- Sensor Capabilities
 - Can be inserted directly into the melt to any depth and at different insertion angles
 - Collects real-time continuous concentration data
 - Installed sensor cost acceptable to industry

A. Measurements Made Within Furnace

B. Measurements Made During Pour

- LIBS=Laser Induced Breakdown Spectroscopy
- Tightly focused laser is used to vaporize a minute amount of material resulting in a plasma
- UV light emitted by the plasma is analyzed using a spectrometer
- The strength of emissions from individual elements in the spectrum are directly related to their concentration in the material

Spectrometer gathers the ultraviolet light and spreads it, like a prism, into a spectrum where the contribution of each element can

be seen

LIBS Advantages

- Fast
 - 10-50 Measurements/second with commercial low cost (~\$10k) solid state lasers
- Accurate
 - Able to measure concentrations at fractions of a percent
- Applicable to a wide range of materials
 - Metals
 - Glass
- Proven
 - Extensive literature on use of the process in lab environments

Project Objectives/Goal

- Problem Statement Off line sampling of melt constituents leads to:
 - Excessive melting times
 - Quality problems
 - Increased energy use and emissions
 - Wasted product

Objectives

- Year 1: Develop laboratory scale LIBS probe for molten aluminum
- Year 2: Develop pilot LIBS probe for molten aluminum
- Year 3: Develop commercial probe for installation at aluminum plants

Project Objectives/Goal

Overall goal

- Development of an in-situ and real time immersible LIBS probe capable of measuring elemental constituents in molten aluminum.
- Sensor has sufficient sensitivity and accuracy to remove the need for time consuming laboratory analyses, chemical treatments, or other processes that hinder productivity

Technical Risks/Innovation

Technical risks

- Development of in-situ optical probe for hot opaque melts
- Automating LIBS analysis
- Bringing LIBS equipment to plant floor
- Packaging LIBS so that it operates as reliably as other sensor equipment and requires little additional employee training

Technical Risks/Innovation

Innovation

- Ceramic probe enables LIBS measurements below melt surface
- Fiber optic coupling removes sensitive equipment from plant floor
- Novel optical design for constraining sensor dimensions
- Automated LIBS analysis software that does not require calibration
- Industrial quality components

Technical Risks/Innovation

- Advancement of state-of-the-art; over competition
 - In-situ analysis of molten material is not otherwise available
 - LIBS probe can collect data to enable:
 - In-line alloying
 - Operating furnaces in a continuous rather than batch mode
 - Advanced furnace and process modeling

Task Performance

Past Technical Milestones

Milestone	Due Date	Completion Date	Comments
1-1 Fiber Optic Design and Construction	9/99	12/99	
1-2 Testing	3/00	12/00	
1-3 Cost Evaluation	3/00	3/00	
2-1 Pilot Scale Probe Construction	10/00	5/01	
2-2 Furnace Modifications	10/00	5/01	
2-3 Testing	2/01	5/01	

Progress Toward Performance Goals

Optical Design

S&C FY02

DOE Showcase Probe

Molten Aluminum LIBS Spectra

 LIBS spectra collected from beneath surface of aluminum melt

Major Accomplishment

Deployment of LIBS Below Surface of Molten Metal

Solid Material: Proven Technology

Molten Material: New Technology

- First ever LIBS Data below surface of molten aluminum
- Patent Pending Design

Pilot Scale Probe

Pilot Scale Probe Tests

- Unique design required working with ceramics fabricator
- 6' length suitable for pilot and full scale test
- 3" OD suitable for off-theshelf insertion and retraction mechanisms

S&C FY02

VFM

Installation at Pilot Scale Facility

Pilot Scale Test: Concentrations

Element	Baseline	Calibrated
Ratio	Ratio	Ratio
Fe/Al	0.0078	0.0079
Mn/Fe	0.51	0.504
Cr/Al	0.0003	0.0003

S&C FY02

Pilot Scale Test: Alloying

Element Ratio	Added Percentage	Calibrated Ratio Increase
Mn/Fe	0.2%	0.21% ¹
Mg/Fe	0.2%	0.32%1

S&C FY02

Industrial Application

- A primary aluminum specification calls for sodium concentrations below 40ppm
- Therefore all aluminum is treated with sodium-reduction process
- LIBS probe can eliminate unnecessary processing with instant sodium measurement
 - Reduced costs
 - Increased Productivity

Industrial Application

- Initial Sodium Measurement
 - LIBS is capable of measuring sodium concentrations at single ppm levels

- Sample 10: 8ppm
- Sample 24: 10ppm

S&C FY02

Industrial Application

- Initial Sodium Measurement
 - LIBS is capable of discerning between very low sodium levels

- Sample 10: 8ppm
- Sample 24: 10ppm

Software Developments

- LIBS spectra are typically translated to concentrations with calibration curves
- Calibration curves are not robust
- Calibration curves are most accurate when measuring ratios
 - Need to know concentration of one component a-priori
- Calibration curves are less accurate as concentration increases

Software Developments

- ERCo is pursuing a proprietary algorithm that translates
 LIBS spectra into concentration measurements
- Method applies to both molten and solid states
- Method is independent of experimental parameters such as laser power
- No calibration data required
- Actual concentrations are computed rather than ratios
- Sample material does not need to be specified

Software: Initial Results

Initial software results from 6061 aluminum alloy plate

Software: Initial Results

Initial software results from 6061 aluminum alloy plate

S&C FY02

Software: Recent Results

Recent aluminum alloy test results in comparison to commercial analyzer

Software: Recent Results

Comparison to certified aluminum standard

Software: Recent Results

Comparison to certified aluminum standard

Variability In Certified Standards - Conclusions

- When present under 1%, certified standard variability is as high as 25%
- Confidence at any concentration cannot be less than 2-3%
- When comparing LIBS probe to certified samples these uncertainties must be taken into consideration

Improvements and Upgrades

- Industrial grade components
- Novel optical design
- Improved precision and repeatability

Industrial Grade Components

- Fiber optic coupled laser
 - Industrial Design
 - Low Maintenance

Improved Hardware Design

- Improved Cooling System
 - Cooling circuit overhauled so that inexpensive compressed air can be used to cool the probe
 - Operating temperatures inside the probe reduced from 650°F to 300°F with 50psi of pressure
 - Less heat-related degradation of components expected as a result of these improvements

Improved Optical Design

- Enhanced Accuracy
 - Optical component upgrades dramatically increased signal strength

Improved Optical Design

- Enhanced Accuracy
 - Increased repeatability and accuracy

Loss of repeatability at higher concentrations is common in LIBS data

Improved Optical Design

Signal Jump Using Improved Optical Design

Large Increase in Signal Where Poor Response was Previously Seen

Commercialization

- Proposed plant tests/deployments, and planned use in IOF manufacturing plant(s)
 - Demonstrations planned at:
 - Commonwealth Aluminum
 - ARCO Aluminum
 - Century Aluminum
 - PPG (Fiberglass)
- Commercialization path & partners
 - ERCo will manufacture and license marketing and sales
 - Stein Atkinson Stordy will commercialize overseas
 - Patent filed

Performance Merits

Improving energy efficiency

- How will energy be saved?
 - Furnace idling during chemistry analysis eliminated
 - Product rejections due to off-spec chemistry reduced

Aluminum Energy Savings

- Production increase of 72% due to continuous furnace operation and commensure reduction in specific fuel use
- Eliminated idle time 34% savings
- 17 Trillion BTU savings annually by 2010

Glass Energy Savings

- In 1995, percent packs were 85-93%
- 25 to 53 Trillion BTU expended
- LIBS could increase percent packs to 98%
- 17 to 45 Trillion BTU savings annually

Steel Energy Savings

- Nearly 3% of all product is scrapped or downgraded
- ½ of the downgraded scrap is reworked 26 trillion
 BTU per year wasted

Path Forward

Future Technical Milestones

Milestone	Due Date	Completion Date	Comments
Construction of demonstration probes	9/02		On schedule
Refine and automate software	9/02		On schedule
Complete in-house testing	10/02		Not yet scheduled to begin
Installation in aluminum plant	11/02		Not yet scheduled to begin
Complete in-plant testing	2/03		Not yet scheduled to begin

Path Forward

Next steps

- Complete construction of probes for installation at aluminum plant
- Complete refinement of algorithm and construct user interface
- Complete in-house testing

Go/no-go consideration(s)

- Algorithm accuracy
- Sensor durability

Conclusions

- Collected Concentration Data from Molten Aluminum
- Calibrationless Software Results are Promising
- Three Industrial Host Sites Signed Up
- Probe Design Improved and Operational
- Optical Design Improved and Operational
- Signal-to-Noise Ratio Dramatically Improved During Program

